Intergraph Asia Pacific 2008
Process Power & Marine

SmartPlant Process Engineering

Intergraph Australia 2008
15-19 September 2008
Challenges

- Design for required product capacity with minimum cost on CAPEX and OPEX
- Manage various design scenarios
- Fast-track projects to take advantage of market window
- Feed into detailed design
- Create deliverables
- Enable clients to review options and costs
- Manage the change
- Manage the operational phase, equipment upgrades, replacements, feed stock changes, production monitoring, etc.
FEED Impact on Project Cost

Cost reduction opportunity

Source: The Chemical Engineer 1996
Intergraph Products Scope

Process, Power & Marine

Front End Engineering Design
Detailed Engineering Design
Fabrication & Construction
Operation & Maintenance

Process Engineering
Process Engineering
SmartPlant Enterprise Extension

- SPE Integrated solution for plant life cycle
- Flexible and extendable
- Partner program key element of the Enterprise
- Process Design foundation for Design and Operations
- UNISIM for process design
- Market request options and simulation solutions fit for industry segments
 - Chemicals
 - Oil and gas
 - Power
 - Pharma (batch)
Process Design

Process Scope

- Process Model
 - Unit Operation
 - Streams
 - Unit Operation
 - Controls
- Case Studies Documentation
 - Cases/Documents (reports, PFD, Revisions)
 - Equipment Data Sheets
 - Piping & Instrumentation Diagram (P&ID)
 - Control System
 - Power Distribution
Case Management = Data Management

- Huge amount of data to be managed
- SmartPlant Technology a perfect fit
The Vision

- Offer a flexible and configurable plant engineering solution supporting the plant life cycle for various industry segments in the process, power and marine segments
- Enable customers to use process design solution fit for purpose and industry
- Provide seamless interface to the design tasks through SP Enterprise
- Offer value-added work processes that lower CAPEX and OPEX cost and the risk of operating a plant
- Extend the solution with engineering solutions from market-leading and/or innovating companies.
SPF Architecture Concepts

- **Simulation Domain**
 - To store all simulation data: Inputs, Outputs, Cases,…

- **Process Design Workbench (Domain)**
 - To select data from the Simulation Domain and develop the process design envelope

- **Publish Domain**
 - To release process design data to the rest of the project
Simulation Domain

- Store Simulation Run Data
 - Streams
 - Unit Operations
- View Only
- Drill Down
- Lists
- Comparison Reports
Retrieve from Simulation Domain into Process Design

- Plant
- Streams
- Operations
- Cases
- Phases
- Components

- Project
- Equipment
- Cases
- Phases
- Components
Process Design Domain

- Plant
 - Project
 - Streams
 - Cases
 - Phases
 - Components
 - Equipment
 - Cases

PFD

Excel
HDA Process Flowsheet

- Hydrogen
- Toluene
- Benzene
- Biphenyl
- Compressor
- Furnace
- Reactor
- Flash Drum
- Stabiliser Column
- Hydrogen Methane
- Toluene Column
- Benzene Column
- Stabiliser Column
Stream Data

Case Comparison

<table>
<thead>
<tr>
<th>Stream</th>
<th>111</th>
<th>111</th>
<th>111</th>
<th>111</th>
<th>111</th>
<th>111</th>
<th>106</th>
<th>106</th>
</tr>
</thead>
<tbody>
<tr>
<td>From</td>
<td>TEE-100.111</td>
<td>TEE-100.111</td>
<td>TEE-100.111</td>
<td>TEE-100.111</td>
<td>CRV-100.106</td>
<td>CRV-100.106</td>
<td>E-101.106</td>
<td>E-101.106</td>
</tr>
<tr>
<td>To</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>44 44444°C</td>
<td>30°C</td>
<td>30°C</td>
<td>30°C</td>
<td>31°C</td>
<td>31°C</td>
<td>31°C</td>
<td>31°C</td>
</tr>
<tr>
<td>Pressure</td>
<td>3000 kPa</td>
</tr>
<tr>
<td>Mass Flow</td>
<td>0.17248 kgs/s</td>
<td>0.18851 kgs/s</td>
<td>0.180216 kgs/s</td>
<td>0.17443 kgs/s</td>
<td>0.182026 kgs/s</td>
<td>0.851814 kgs/s</td>
<td>0.851813 kgs/s</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>5.02565 kg/m³</td>
<td>5.02652 kg/m³</td>
<td>5.02562 kg/m³</td>
<td>5.02163 kg/m³</td>
<td>5.02163 kg/m³</td>
<td>5.02163 kg/m³</td>
<td>5.02163 kg/m³</td>
<td>5.02163 kg/m³</td>
</tr>
<tr>
<td>Specific Heat Capacity</td>
<td>33.90541 kJ/kg·deg(C)</td>
<td>33.81809 kJ/kg·deg(C)</td>
<td>33.81289 kJ/kg·deg(C)</td>
<td>33.81415 kJ/kg·deg(C)</td>
<td>33.778162 kJ/kg·deg(C)</td>
<td>33.778162 kJ/kg·deg(C)</td>
<td>33.778162 kJ/kg·deg(C)</td>
<td>33.778162 kJ/kg·deg(C)</td>
</tr>
<tr>
<td>Heat Capacity Ratio</td>
<td>1.400144</td>
<td>1.395662</td>
<td>1.395662</td>
<td>1.395662</td>
<td>1.395662</td>
<td>1.395662</td>
<td>1.395662</td>
<td>1.395662</td>
</tr>
<tr>
<td>Viscosity</td>
<td>0.06932 cP</td>
<td>0.06971 cP</td>
<td>0.06971 cP</td>
<td>0.07062 cP</td>
<td>0.07062 cP</td>
<td>0.07062 cP</td>
<td>0.07062 cP</td>
<td>0.07062 cP</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>0.137914 W/(m·K)</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0.113896 kg/m³</td>
</tr>
<tr>
<td>Benzenene</td>
<td>0.113896 kg/m³</td>
</tr>
<tr>
<td>BPhenyl</td>
<td>0.113896 kg/m³</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.113896 kg/m³</td>
</tr>
<tr>
<td>Phase</td>
<td>Kg/s</td>
<td>Kg/s</td>
<td>Kg/s</td>
<td>Kg/s</td>
<td>Kg/s</td>
<td>Kg/s</td>
<td>Kg/s</td>
<td>Kg/s</td>
</tr>
<tr>
<td>Mass Flow</td>
<td>0.17248 kgs/s</td>
<td>0.18851 kgs/s</td>
<td>0.180216 kgs/s</td>
<td>0.17443 kgs/s</td>
<td>0.182026 kgs/s</td>
<td>0.851814 kgs/s</td>
<td>0.851813 kgs/s</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>5.02565 kg/m³</td>
<td>5.02652 kg/m³</td>
<td>5.02562 kg/m³</td>
<td>5.02163 kg/m³</td>
<td>5.02163 kg/m³</td>
<td>5.02163 kg/m³</td>
<td>5.02163 kg/m³</td>
<td>5.02163 kg/m³</td>
</tr>
<tr>
<td>Specific Heat Capacity</td>
<td>33.90541 kJ/kg·deg(C)</td>
<td>33.81809 kJ/kg·deg(C)</td>
<td>33.81289 kJ/kg·deg(C)</td>
<td>33.81415 kJ/kg·deg(C)</td>
<td>33.778162 kJ/kg·deg(C)</td>
<td>33.778162 kJ/kg·deg(C)</td>
<td>33.778162 kJ/kg·deg(C)</td>
<td>33.778162 kJ/kg·deg(C)</td>
</tr>
<tr>
<td>Heat Capacity Ratio</td>
<td>1.400144</td>
<td>1.395662</td>
<td>1.395662</td>
<td>1.395662</td>
<td>1.395662</td>
<td>1.395662</td>
<td>1.395662</td>
<td>1.395662</td>
</tr>
<tr>
<td>Viscosity</td>
<td>0.06932 cP</td>
<td>0.06971 cP</td>
<td>0.06971 cP</td>
<td>0.07062 cP</td>
<td>0.07062 cP</td>
<td>0.07062 cP</td>
<td>0.07062 cP</td>
<td>0.07062 cP</td>
</tr>
<tr>
<td>Thermal Conductivity</td>
<td>0.137914 W/(m·K)</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>0.113896 kg/m³</td>
</tr>
<tr>
<td>Benzenene</td>
<td>0.113896 kg/m³</td>
</tr>
<tr>
<td>BPhenyl</td>
<td>0.113896 kg/m³</td>
</tr>
<tr>
<td>Toluene</td>
<td>0.113896 kg/m³</td>
</tr>
<tr>
<td>Phase</td>
<td>Kg/s</td>
<td>Kg/s</td>
<td>Kg/s</td>
<td>Kg/s</td>
<td>Kg/s</td>
<td>Kg/s</td>
<td>Kg/s</td>
<td>Kg/s</td>
</tr>
</tbody>
</table>
Correlating the function with the plant items

![Image of a software interface titled "Update Design - Separation Section (NormalOperating)"

<table>
<thead>
<tr>
<th>Item</th>
<th>Type</th>
<th>Mapped To</th>
<th>Scale</th>
<th>Engineering Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-101a</td>
<td>Pump</td>
<td>P-101a, P-101b, P-101c</td>
<td>0.5</td>
<td>P-101a</td>
</tr>
<tr>
<td>E-100</td>
<td>Column</td>
<td>E-100</td>
<td>0.5</td>
<td>E-100</td>
</tr>
<tr>
<td>E-101</td>
<td>Shell & Tube</td>
<td>E-101</td>
<td>0.5</td>
<td>E-101</td>
</tr>
<tr>
<td>V-100</td>
<td>Pressure Vessel</td>
<td>V-100</td>
<td></td>
<td>V-100</td>
</tr>
<tr>
<td>S-1-100</td>
<td>Steam</td>
<td>S-1-100</td>
<td></td>
<td>S-1-100</td>
</tr>
<tr>
<td>S-1-101</td>
<td>Steam</td>
<td>S-1-101</td>
<td></td>
<td>S-1-101</td>
</tr>
<tr>
<td>S-1-102</td>
<td>Steam</td>
<td>S-1-102</td>
<td></td>
<td>S-1-102</td>
</tr>
<tr>
<td>S-1-103</td>
<td>Steam</td>
<td>S-1-103</td>
<td></td>
<td>S-1-103</td>
</tr>
<tr>
<td>S-1-104</td>
<td>Steam</td>
<td>S-1-104</td>
<td></td>
<td>S-1-104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Simulated Item</th>
<th>Property</th>
<th>Value</th>
<th>Scaled Value</th>
<th>Engineering Item</th>
<th>Property</th>
<th>Current Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pump1 NormalOperating</td>
<td>Temperature</td>
<td>210 F</td>
<td>210 F</td>
<td>P-101a NormalOperating</td>
<td>Operating Temperature</td>
<td>205 F</td>
</tr>
<tr>
<td>Pump1 NormalOperating</td>
<td>Pressure</td>
<td>28 psi</td>
<td>28 psi</td>
<td>P-101b NormalOperating</td>
<td>Operating Pressure</td>
<td>28 psi</td>
</tr>
<tr>
<td>Pump1 NormalOperating</td>
<td>Duty</td>
<td>124000 Btu/hr</td>
<td>62000 Btu/hr</td>
<td>P-101c NormalOperating</td>
<td>Duty</td>
<td>62000 Btu/hr</td>
</tr>
<tr>
<td>Pump1 NormalOperating</td>
<td>Temperature</td>
<td>210 F</td>
<td>210 F</td>
<td>P-101b NormalOperating</td>
<td>Operating Temperature</td>
<td>205 F</td>
</tr>
<tr>
<td>Pump1 NormalOperating</td>
<td>Pressure</td>
<td>28 psi</td>
<td>28 psi</td>
<td>P-101c NormalOperating</td>
<td>Operating Pressure</td>
<td>28 psi</td>
</tr>
<tr>
<td>Pump1 NormalOperating</td>
<td>Duty</td>
<td>124000 Btu/hr</td>
<td>62000 Btu/hr</td>
<td>P-101c NormalOperating</td>
<td>Duty</td>
<td>62000 Btu/hr</td>
</tr>
</tbody>
</table>

New | Changed | Deleted | Unchanged
HDA - Process Flow Diagram (PFD)

Stream 101 102 103 104 105 106 107 108 109 110
Temperature
Pressure
Hydrogen
Methane
Benzene
Toluene
BiPhenyl
Value

Preliminary 3D Plant Layout Benefits Process, Power & Marine

- Speed & quality improvements compared to manually drafted layouts;
 - Improved preliminary designs
 - Increased estimate accuracy based on actual layout
 - Higher Quality Proposals

 leading to …

- 10% reduction in concept development man-hours
- 90% reduction in material estimate man-hours
- 10-20% reduction in detailed design man-hours
- 5-10% reduction in total plant installed cost
- Reduction in materials requirements

SmartPlant Layout – Design Layout (Case) Alternatives

CASE 10
2320 ton

CASE 12
2210 ton

CASE 13
2130 ton
UniSim® Design Suite

Fast Track from Conceptual to Detailed Design

AspenTech Icarus Cost Estimating

Mechanical Data Sheets

SmartPlant Layout