Un occhio dall’alto con l’interferometria satellitare per monitorare operativamente fenomeni di subsidenza

di Derold W. Holcomb

Negli ultimi anni, una maggiore coscienza dell’impatto dell’uomo sull’ambiente ha portato le organizzazioni pubbliche e private a misurare i cambiamenti ed agire per proteggere il nostro pianeta dagli effetti avversi dell’attività umana. Uno dei molti cambiamenti per il quale le organizzazioni pubbliche hanno un particolare interesse è il monitoraggio dei fenomeni di subsidenza o abbassamento della superficie del terreno.

I fenomeni di subsidenza possono verificarsi a causa di variazioni del sottosuolo potenzialmente causati dall’uomo. La loro osservazione è straordinaria e cruciale in una varietà di scenari, visto che anche variazioni del sottosuolo apparentemente piccole possono avere conseguenze. La subsidenza, che si trova in molte aree, può causare inadeguate alimentazioni idriche, l’erosione dei terreni, lo spezzamento di strade e l’abbassamento della superficie del terreno. Tutte le industrie che estraggono risorse dal sottosuolo, come petrolio, gas (Maruya, 2009), acqua (Thompson, 2011) e minerali, eseguono il monitoraggio di subsidenza, assumendo il rischio di una perdita o lo smantellamento della superficie del terreno. Nell’estrazione di petrolio e gas, i fenomeni di subsidenza possono presentarsi nella zona di produzione di idrocarburi che sono soggette a collassi e all’erosione delle riserve.

Quando le riserve acquarie sotterranee sono utilizzate come fonte per le forniture idriche comunali, la falda acquifera può collassare, provocando perdite e causando perdite di quantità e precipitazioni atmosferiche possono cambiare. Dopo il collasso, l’approvvigionamento d’acqua può diventare impossibile, causando la perdita permanente di risorse.

La subsidenza nelle aree urbane può essere causata dal carico degli insediamenti (ad esempio per un’impianto regolare del suolo sotto una struttura), che possono causare costi: danni alle infrastrutture vitali come le tubazioni degli acquedotti e le rogature, oppure le condotte elettriche, e vie di trasporto. Le aziende coinvolte nella realizzazione di tunnel attraversano la montagna con costi di traforazione di traghetti e lunghi monitoraggi degli effetti delle loro azioni. Per queste e molte altre applicazioni, un’impianta regionale di detenzione di informazioni spaziali è necessaria per monitoraggio della subsidenza.

Acquisizione dei dati di subsidenza

Alla ricerca di tali informazioni possono presentare costi notevoli, ma anche essere costosi per la loro acquisizione. Un’altra chiave per la subsidenza può essere particolarmente impegnativa per le aziende che le informazioni economiche che le organizzazioni e organizzano di più con risorse finanziarie limitate. Attualmente, il monitoraggio della subsidenza è condotta per mezzo di indagini ripetute con osservazioni topografiche convenzionali o GPS. Altre tecniche utilizzano registratori di biomarcati permanenti o elettroni di voltaggio. Tutti questi approcci sono limitati, perché producono dati puntuali che sono costosi e possono essere non rappresentativi o fuorvianti.

Il monitoraggio satellitare, utilizzando la tecnologia radar interferometrica, sta offrendo un’opzione attraente per il monitoraggio della subsidenza. Prima di tutto richiede un minimo lavoro costoso sul campo, se ne sia necessario. Ma il vantaggio maggiore è che invece di pochi punti sparsi, si ottiene un risultato con una mappa densa (ad esempio...
Ogni pochi metri di pixel geocodificati di variazioni di quota che producono una mappa dettagliata dello spostamento della superficie.

Per dimostrare il potenziale di questa tecnica per il monitoraggio operativo della subsidenza, uno studio è stato condotto usando una regione in Arizona che giace sopra una faldetta per i suoi fenomeni di subsidenza (vedi Figura 1). Questa regione è stata studiata e mappata per un certo numero di anni dal Dipartimento delle Risonanze Ioniche dell'Arizona, quindi è una area di test accuratamente misurata.

Inoltre, il clima arido dell'Arizona offre un terreno asciutto e vegetazione minima, situazione vantaggiosa per l'interferometria radar. La presenza della vegetazione può produrre fenomeni di decorrelazione indotti dalla vegetazione stessa, che possono compromettere e proibire analisi precise.

La tecnologia DinSAR
Per questo studio sono state derivate dettagliate mappe di spostamento utilizzando una tecnica chiamata interferometria differenziale radar (DinSAR). In termini semplici, il satellite radar raccoglie un'immagine dell'area di studio nel corso di due differenti passaggi. L'informazione di fase del segnale radar viene elaborata da queste due immagini per ogni pixel, per estrarre una differenza di fase chiamata interferogramma.

A seconda di vari fattori, come il rumore del sistema o le variazioni atmosferiche, questa differenza può essere apprezzata fino ad una precisione inferiore alla lunghezza d'onda, anche un quarto di lunghezza d'onda.

Costruire un sensore in banda-X, operante a tre centimetri, potrebbe, in condizioni ottimali, mappare uno spostamento di circa 0.75 centimetri. Una sezione di tale interferogramma si vede in Figura 4.

I dati satellitari utilizzati in questo progetto pilota provengono da sensori TerraSAR-X forniti da Infoterra. Come suggerisce il nome, il radar apertura sintetica utilizza radiazioni in banda X. Questo satellite è in grado di fornire immagini a varie risoluzioni (dimensioni dei pixel), a seconda dell'applicazione prevista e l'area di copertura desiderata.

Per questo progetto sono state analizzate 20 scene in modalità strip-map a risoluzione di circa due metri/pixel. Le scene hanno coperto un'area di dimensioni di 32 per 56 chilometri (20 per 35 miglia). Una delle immagini radar è illustrata nella Figura 2. Sistemi di posizionamento a bordo del satellite con post-processing forniscono informazioni sulle posizioni con una precisione inferiore a 0.5 metri nello spazio, che è abbastanza per garantire misure precise di deformazione della superficie geolocalizzata.

Il software necessario per questi calcoli precisi è complesso, sofisticato ed era disponibile in gran parte nel mondo universitario e dei centri di ricerca specializzati. Tuttavia, il software utilizzato per questo progetto, il modulo di interferometria radar IMAGINE Radar Mapping Suite, è stato sviluppato specificamente per portare questa tecnologia alle organizzazioni che hanno necessità di risultati sempre più dettagliati.
di spostamento, ma non hanno o non vogliono essere costruite ad acquiologhe competenze specializzate nel processo di dati radar.
In molti casi, è completamente automatico, basta inserire le due scene e attendere che l'immagine degli spostamenti dal testo venga calcolata.
La figura 3 mostra una delle interfacce utente del software con workflow guidato. Le immagini mostrate nelle figure 4 e 5 sono state calcolate dal software usando un processo automaticamente adattabile, raggiungendo questi risultati, senza necessità di uno specialista in elaborazioni radar appropriatamente addestrato.
In aggiunta alle immagini DinSAR, è richiesto per il calcolo dello spostamento, un modello accettato da elevazione digitale del terreno (DEM). Questo può essere ottenuto convenientemente utilizzando il processo di estrazione InSAR DEM che analizza l'interferogramma per derivare la quota di ciascun pixel. Per questo studio, molte delle immagini TerraSAR-X sono state utilizzate per creare sovrapposizioni dei modelli DEM che poi sono stati utilizzati.

Analisi delle Immagini
Le 20 scene TerraSAR-X possono essere combinata in coppia di immagini interferometriche che coprono vari periodi di tempo. Ognuna di queste immagini può poi essere elaborata per valutare uno spostamento superficiale attraverso quel periodo di tempo. Ciò consente la possibilità di monitoraggio accogliendo una sequenza progressiva di immagini che illustrano il movimento della superficie nel tempo.
Questa serie temporale di immagini permette di misurare l'effetto di un aumento delle estremi o la risposta ad una azione regionale.

Il processo di calcolo degli spostamenti genera diverse immagini intermedie che gli analisti possono visualizzare, se necessario. Queste potrebbero essere utili per valutare se un particolare processo sta ottenendo i migliori risultati possibili o per determinare se i parametri di elaborazione hanno bisogno di piccoli aggiustamenti.
Una delle immagini intermedie più utili è la "intereference coherence image", una indicazione numerica (di tipo binario 0-1) che ci da una indicazione di stabilità di misura per ciascun pixel derivato dalle due immagini. Le aree di bassa coerenza (più brillanti) sono quelle più affidabili rispetto alle zone più scure. Dove manca la coerenza ci è una precisione minore dall'analisi dello spostamento e il segnale diventa rumoroso. Un'immagine campione di coerenza viene mostrata nella figura 4, insieme con un'immagine corrispondente agli spostamenti.
Nell'immagine di coerenza (figura 4, a sinistra), i pixel scuri indicano una significativa perdita di coerenza lungo il fiume che scorre da est ad ovest attraverso il centro della ricerca. Ci sono anche aree di coerenza molto bassa associata ad aree vegetate lungo il fiume. Queste sono molto scure e rettangolari.
La sequenza di spostamento in figura 4 e l'interferogramma corrispondente (a colori) si riferisce all'immagine radar. Questa differenza di fase quantifica lo spostamento di superficie tra le due immagini della coppia InSAR. Mostrandone queste serie di differenze di fase si crea l'immagine finale della coerenza, come visto in figura 4 (a destra). Di particolare interesse sono le due caratteristiche curve sinusoidali del centro, che sono aree di coerenza. Ogni pixel in questa immagine ha un valore che indica l'interferenza della coerenza. Ad esempio, il fiume mostra una perdita quasi totale di coerenza, così come diverse tennine dell'agricoltura. Ma notate che alcuni campi agricoli mostrano coerenza molto elevata. Questi possono essere nuda terra in attesa di seminare e corrispondono ad aree chiaramente visibili all'immagine di coerenza, indicando risultati di siccità errati.
All margine sottili, la combinazione del fiume, i campi a bassa coerenza e il bordo dell'immagine producono un'area molto scura. Queste può essere siccità, visto che nei campi si utilizza acqua pompata, ma la chiaramente inclina una componente da armonia. O'una confusione similare al margine destro nella figura 4. Queste aree devono essere considerate come aventi una confusione inferiore.
In figura 5, le informazioni contenute delle due immagini sono incorporate nel contesto per facilitare l'interpretazione, fornendo una mappa di siccità esattamente mostrata nel contesto di un DEM locale, anch'esso creato da immagini TerraSAR-X InSAR. Nella creazione di queste, i pixel con una coerenza sotto 0,25 sono stati considerati indistinguibili e colorati di grigio. Questi indicano le tracce del fiume attraverso il centro della scena, in particolare nella area agricola 7 residuante ai margini est ad ovest dell'immagine. Questa immagine con mappatura mostra una corrispondenza con l'immagine in figura 4.
La forma della siccità mappata con DinSAR, considerata la sua integrità, assumerebbe una buona affidabilità, tale da poter essere usata in considerazione. Non c'è possibilità che misurazioni di parametri punti diversi, pochi sul campo, possano dare un quadro della siccità in quest'area. Anci, potrebbe essere possibile avere un risultato che non ricofigura il carattere globale. Questo modello di siccità indica anche la presenza del sottosuolo, fornendo a tecnici uno squadro utile sulla formazione che stanno analizzando.
Questo studio pilota ha dimostrato i punti di forza del satellite DInSAR per il mapping dei movimenti ascella regionale, in quanto la scelta matrice di valori di pixel supera di gran lunga le capacità di rilevazione dei movimenti da qualsiasi altra tecnologia. La necessità di verificare sul campo robotopi o praticamente nulla ebbene notevolmente il costo per ottemere tali informazioni, e l'adozione del software ERSAR completamente automatizzato DInSAR porta questa capacità ad una comunità di utenti di grandi dimensioni.

Riferimenti

Parole chiave
SAR, interferometria, DInSAR.

Ringraziamenti
L’autore ringrazia Astrum Services / Infoterra GmbH per la fornitura di 20 scene TerraSAR-X in modalità strip-mappa, utili all’acquisizione di input per questo lavoro. Inoltre ringrazia per la collaborazione il Dipartimento di Geofisica presso il Dipartimento delle risorse idriche Aitora.

Abstract
Eyes from Above: Satellite Interferometry. Monitors Operational Subsidence In recent years, greater awareness of the intricate bonds among humans and their environment has compelled public and private organizations to survey changes and take action to protect our world from adverse effects of human activity. One of the many changes that the public has a vital interest in monitoring is subsidence, or the lowering of the ground surface.

Autore
DEBORAH W. HOCOMB DEBORAH.W.HOCOMB@MICROSURVEY.COM

MicroSurvey
GPS GNSS RTK APS-3
Facile, Completo, Preciso

Surveys and Total Stations
Surveysoft - Distruttore per Italia dei Prodotti Altus-GPS, Microsurvey Software, RUIDE Station Total
www.surveysoft.it